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Abstract. We reconsider the problem of the static thermal roughening of an elastic manifold at the critical
dimension d = 2 in a periodic potential, using a perturbative Functional Renormalization Group approach.
Our aim is to describe the effective potential seen by the manifold below the roughening temperature on
large length scales. We obtain analytically a flow equation for the potential and surface tension of the
manifold, valid for low temperatures. On a length scale L, the renormalized potential is made up of a
succession of quasi parabolic wells, matching onto one another in a singular region of width ∼ L−6/5 for
large L. For strong periodic potential, the perturbation theory breaks down, and we argue, based on a
variational calculation, that the transition becomes first order. We also obtain numerically the step energy
as a function of temperature, and relate our results to the existing experimental data on 4He. Finally, we
examine the case of a non local elasticity which is realized physically for the contact line.

PACS. 05.40.-a Fluctuation phenomena, random processes, noise, and Brownian motion – 64.60.-i General
studies of phase transitions – 68.35.-p Solid surfaces and solid-solid interfaces

1 Introduction

The roughening transition has been studied in great de-
tail, both theoretically and experimentally [1,2]. Direct
analogies with the (two dimensional) XY -model or the
Coulomb gas furthermore make this problem particularly
enticing [3]. More recently, the role of disorder on the
roughening transition or on the properties of the XY
model, has attracted considerable interest [4–8]. In partic-
ular, replica calculations and Functional Renormalization
Group (FRG) methods have been applied to this prob-
lem, with sometimes conflicting results [9]. In this paper,
we wish to reconsider the problem of the roughening tran-
sition in the absence of disorder, from a FRG point of
view, where the flow is not a priori projected onto the first
harmonic of the periodic potential. Within a renormaliza-
tion scheme where only local and second order derivative
terms are considered, we establish equations for the evo-
lution of the full periodic potential V (ϕ), and the surface
tension γ with the length scale L = e`, which we analyze
both numerically and analytically, in the low temperature
phase. If we start with a sinusoidal periodic potential, the
shape of the fixed point potential V ∗(ϕ) evolves to a nearly
parabolic shape with matching points becoming more and
more singular as the length scale increases. The nature of
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the singularity is investigated in detail close to the fixed
point, that is for small values of the rescaled temperature
T = T

2πγλ2 where λ is the periodicity of the potential and
γ the elastic stiffness. We find that the width ∆ϕ of the
singular region scales as L−3g(T )/5, where g(T ) governs the
scaling of the surface stiffness with the length scale accord-
ing to γ(L) ∼ Lg(T ). The exponent g(T ) tends towards 2
with negative corrections which we calculate, when T goes
to 0 (i.e. for L→∞).

The paper is organized as follows. In Section 2, we in-
troduce the model: we outline the calculations involved
and discuss the differences with the approach of Nozières
and Gallet (NG). We then explain in Section 3, by a mean
field argument the origin of the singularity that develops
during the renormalization flow. In Section 4, we present
a scaling form for the singularity of the renormalized po-
tential, valid close to its maxima and for small renormal-
ized temperatures. Using our renormalization group flow,
we compute in Section 5 the step energy as a function of
temperature. Finally, in Section 6, we look at the case of
a contact line in a periodic potential, as a physical real-
ization of a non local elastic stiffness. The various techni-
cal points concerning our renormalization scheme and the
corresponding calculations are relegated in Appendix A,
while we discuss in Appendix B the first order nature of
the roughening transition for large values of the bare pin-
ning potential, where the perturbative FRG breaks down.
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2 Model and functional renormalization group

We consider an elastic interface whose height fluctuations
are described by a profile Φ(x), where x is a d-dimensional
vector, in the presence of a deterministic periodic potential
V . Supposing that the slope of the interface is everywhere
small, the energy of the system is:

H[Φ] =
γ

2

∫
ddx (∇Φ(x))2 +

∫
ddx V

(
Φ(x)
λ

)
(1)

where γ is the elastic stiffness and λ the periodicity of
the potential. In the absence of periodic potential, the
height fluctuations of the surface on a length scale L
scale as L2−d. For d > 2, the interface is therefore al-
ways flat. For the critical dimension d = 2, the interface
is rough only if the temperature exceeds a certain criti-
cal temperature TR. When the potential V is harmonic,
this model is the continuous version of the Sine-Gordon
model. NG have studied the statics of this problem using
a two-parameter renormalization group scheme, and have
written flow equations for γ(L) and the amplitude vo(L)
of the periodic potential. They suppose that during the
flow, vo remains small compared to the temperature and
neglect all higher harmonics of the potential. Correspond-
ingly, within this procedure, the renormalization scheme
ceases to be valid when vo becomes of the order of the tem-
perature. In the low temperature “flat” phase, this occurs
after a finite renormalization since vo grows with distance.
The procedure used in [1] to obtain various physical quan-
tities is then to “interrupt” the renormalisation at a scale
L such that vo(L) ∼ T .

In our calculation, we consider a general periodic func-
tion with the only constraint that it should be sufficiently
smooth (we shall explain this more quantitatively in the
following). Since we re-sum the whole perturbation expan-
sion in vo/T , there is however no constraint on the ampli-
tude of the potential, and the renormalization procedure
can in principle be carried on any length scale without in-
terruption. The relevant coupling constant then appears
to be vo/γ rather than vo/T . During the renormalization
flow, we keep track of the whole function V (ϕ) instead of
projecting onto the first harmonic, so that we have a more
quantitative knowledge of the behaviour of the potential
for low temperatures.

Technically, we proceed by considering the partition
function:

Z =
∫

dΦ(x) e−βH[Φ(x)]. (2)

We perform the renormalization procedure by splitting the
field Φ into a slowly-varying and a rapidly-varying part as:

Φ(x) = Φ<(x) + Φ>(x). (3)

The Fourier modes k of Φ< are such that 0 ≤ |k| ≤ |Λ|/s,
and those of Φ>, such that |Λ|/s ≤ |k| ≤ |Λ|, where
s = ed`, |Λ| being a high momentum cut-off, of the or-
der of 1/a, where a is the lattice spacing. We integrate

over the fast modes in the partition function and retain
only the terms that renormalize the gradient term and
the potential term. The other terms that are generated
are discarded. We give more details on our specific renor-
malisation scheme in Appendix A, where we establish a set
of flow equations for d = 2, for the rescaled dimensionless
potential V = V

γλ2|Λ|2 and the dimensionless temperature
T = T

2πγλ2 . The flow equation for the local potential can
be established non ambiguously and reads:

dV
d`

= (2− g)V − π V
′2

(1 + V
′′
)

+
T

2
ln(1 + V

′′
), (4)

where g comes from the renormalization of the surface
tension (or the temperature), through dγ

d` = gγ. The cal-
culation of g is not obvious, and different procedures have
been proposed in the literature [1,10], in particular to deal
with infrared divergences which appear in the calculation.
The particular scheme we use is detailed in Appendix A
and compared to the scheme used by NG. While we do
not claim that the scheme adopted here is exact, most
of the results presented in this paper do not depend cru-
cially on the exact form for g. On the other hand, the
numerical values of the bare parameters needed to fit, say,
experiments on 4He surfaces do depend on the particular
renormalization scheme. Within the scheme used here we
find that g is given, in the small T limit, by:

g = −4π
∫ 1

0

dϕ
V

2
(ϕ)V

2
(ϕ)(

1 + V
′′
(ϕ)
)5

+
T

4

∫ 1

0

dϕ
V

2
(ϕ)(

1 + V (ϕ)
)4 · (5)

These equations call for some comments.

– The relevant perturbative parameter appears to be V ,
rather than V/T . In the limit V � 1, and in the case
where the potential is purely harmonic (i.e. V (ϕ) =
vo cos(2πϕ)), the RG equations read:

duo

d`
=
(

2− πT

γλ2

)
uo

dγ
d`

= 2π4

(
2πT
γλ2

)
u2

o

γ2λ4
(6)

where uo = vo/|Λ|2. The first equation is trivial and
identical to the one in NG, and immediately leads to
the value of the roughening transition temperature:
TR = 2γ∞λ2/π, where γ∞ is the renormalized value
of γ. The second is close to, but different from the
one obtained in the particular renormalization scheme
used by NG: near the critical temperature TR, the co-
efficient between parenthesis is equal to 4 in our case
and to 0.4 according to NG. As mentioned above and
discussed in Appendix A, this comes from the different



A. Hazareesing and J.-P. Bouchaud: Functional renormalization description of the roughening transition 715

treatment of the gradient terms in both approaches, in
particular how the infrared divergences which appear
in the calculation are handled. The expression (5) is
actually expected to be valid only for T → 0.

– The renormalization of the surface tension, as mea-
sured by g, is positive for small V and, as shown in
Section 4, must tend towards g = 2 for T → 0. One
can check that, as has been pointed out by NG, if the
initial potential is parabolic (i.e. V (φ) = v0φ

2), then
the coefficient g vanishes identically, and there is no
renormalization of the surface tension. This is indeed
expected since in this (quadratic) case, all modes are
decoupled.

– The flow equations only make sense if V
′′
> −1.

We have checked numerically that if this condition is
satisfied at the beginning, it prevails throughout the
flow. On the other hand, if the initial potential is so
steep that this condition is violated, the perturbative
calculation is meaningless. This comes from the fact
that metastable states, where the surface zig-zags be-
tween nearby minima of the potential, appear at the
smallest length scales. In this respect, it is useful to
note that the last term of the flow equation on V
comes from the integration of the Gaussian fluctua-
tions of the fast field around the slow field. The condi-
tion V

′′
> −1 is a stability condition for these fast

modes. If the unrenormalized potential is harmonic
(i.e. V (ϕ) = vo cos(2πϕ)), and the unrenormalized
surface tension given by γo, then this condition reads
vo
γ

(
2π
λ|Λ|

)2

< 1, which simplifies to vo
γ < 1 in the case

where λ = a. If the initial value of the potential is
too large, one actually expects the transition to be-
come first order. In our calculation, this is associated
with an instability of the fast modes. A variational cal-
culation presented in Appendix B indeed predicts the
transition to become first order when vo

γ ≥ 1 (but see
the discussion in [12,1]).

– Wegner and Houghton have derived a formal equation
for the renormalization of a Hamiltonian with a gradi-
ent square term and an arbitrary (not necessarily peri-
odic) potential term V (φ) [11]. Our equation is nothing
but a particular projection of Wegner and Houghton’s
general equation, retaining the local potential term
and the gradient square term. As mentioned above,
the treatment of the gradient square term is some-
what ambiguous. On the other hand, the extraction
of the potential term is rather straightforward and we
believe that equation (4) for V is exact. The impor-
tant term in this equation is the second term, propor-

tional to V
′2

, and independent of temperature. This
term leads to the appearance of singularities in the
flow equation: up to second order in V , this equation
is close to the Burgers’ equation (see below) for which
it is well known that shocks develop in time. The fact
that this term survives even in the zero temperature
limit is at first sight strange, since one could argue
that for T = 0+, there are no longer any thermal
fluctuations, and thus no renormalization. This argu-

ment is not correct because we are computing a par-
tition function, thereby implicitly assuming that the
infinite time limit is taken before the zero temperature
limit. Such a non trivial renormalization has also been
found in the context of pinned manifolds [13,14], and
can be understood very simply using a mean-field ap-
proximation, which we detail in the next section.

3 Mean field analysis and effective potential

In this section, we show on a simplified mean field version
of the model how the new non linear term V ′2 (which sur-
vives in the T = 0 limit) arises in the flow equation of the
potential. Using a discrete formulation of the problem and
replacing the local elasticity modeled by the surface ten-
sion term by a coupling to all neighbours, we can rewrite
the energy as:

Hmf({Φ}i, Φ) =
γ

2a

N∑
i

(Φi − Φ)2 + a
N∑
i

V (Φi) (7)

where Φ is the center of mass of the system, a the lat-
tice spacing and L = Na. Implementing the constraint
Φ = 1/N

∑
Φi by means of a Lagrange multiplier in the

partition function, we have:

Z[Φ] =
∫

dη
∫ ∏

i

dΦi e
−βHmf({Φ}i,Φ)−η

(
NΦ−

P
i Φi

)
(8)

which can also be expressed as:

Z[Φ] =
∫

dη eN log z(Φ+ηa/βγ)+N η2a
2βγ (9)

where

z(Ψ) =
∫

dΦ e−
βγ
2a (Ψ−Φ)2−βaV (Φ) = z

(
Φ+

ηa

βγ

)
. (10)

We are left with a simpler problem since we now have a
one-body problem. We introduce the auxiliary partition
function zR(Ψ, τ) defined as:

zR(Ψ, τ) =

√
βγ

2πaτ

∫
dΦ e−

βγ
2a

(Ψ−Φ)2

τ −βaV (Φ). (11)

Up to a multiplicative constant, one has z(Ψ) = zR(Ψ, τ =
1), where zR(Ψ, τ) verifies the diffusion equation:

∂zR

∂τ
=

a

2βγ
∂2zR

∂Ψ2
(12)

with an initial condition given by:

zR(Ψ, τ = 0) = e−βaV (Ψ). (13)
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Defining now the effective pinning potential VR as:

aVR(Ψ, τ) = −T log zR(Ψ, τ) (14)

we can then easily show that VR is the Hopf-Cole solution
of the non linear Burgers’ equation [14]:

∂VR

∂(τa)
=

T

2γ
∂2VR

∂Ψ2
− a

2γ

(
∂VR

∂Ψ

)2

(15)

where the temperature independent non linear term V 2
R

indeed appears. It is known from results on the Burgers’
equation, that, with “time” τ , the effective potential VR

develops shocks, smoothed out at finite temperature, be-
tween which it has a parabolic shape. The appearance of
singularities is due to the non linear term in the partial
differential equation, which indeed survives in the limit
T = 0.

It is interesting to see how this “toy” renormalization
group captures some important features of the full scheme,
such as the one shown above for a non disordered poten-
tial. These singularities (shocks) which appear can be in-
terpreted as the sign that a finite external force must be
applied to the pinned object to drive it at a small non zero
velocity [15].

4 Analysis of the low temperature effective
potential

4.1 Scaling ansatz for V(φ)

In this section, we go back to the model introduced in
Section 2 and analyze the nature of V close to the low
temperature fixed point, that is for small values of the
rescaled temperature T . Since g > 0 in the low tempera-
ture phase, this corresponds to the large scale structure of
the renormalized potential for all temperatures T < TR.

Expanding V around one of its minima ϕ = ϕ∗ as
V (ϕ) = V m + 1

2κ(ϕ− ϕ∗)2 where κ > 0, and replacing V
in the flow equation (4), we have

dV m

d`
= (2− g)V m +

T

2
ln(1 + κ)

dκ
d`

= (2− g)κ− 2π
κ2

1 + κ
· (16)

One can actually check that a parabolic shape for V is
exactly preserved by the renormalization flow. However,
since the potential has to be periodic, these parabolas
should match periodically around each maximum. The re-
gion of the maximum is therefore expected to be singular
in the limit T .

In order to investigate the nature of singularity of the
renormalized periodic potential for small but non zero T ,
we make a scaling ansatz on V

′′
for small ϕ. As mentioned

above, the value V
′′
(0) = −1 is special and corresponds to

the appearance of small scale instabilities. Now since we

expect a singularity to develop as T goes to 0, it is plausi-
ble (and indeed self-consistent) that V

′′
(0) tends towards

−1. As T goes to 0, we thus make the scaling ansatz:

V
′′
(ϕ) = −1 + T

δF ′
(
ϕ

T
α

)
(17)

where F ′(0) > 0. This means that the width of the sin-
gular region shrinks as ∆ϕ ∼ T

α
, while the difference

between the maximum value of V
′′

and −1 goes to zero
as T

δ
.

Integrating the previous equation in the scaling region
leads to:

V
′
(ϕ) = −ϕ+ T

δ+αF
(
ϕ

T
α

)
(18)

with F(0) = 0 to ensure that ϕ = 0 is a maximum of V .
Integrating once more the above equation, one finds:

V (ϕ) = VM −
ϕ2

2
+ T

δ+2αG
(
ϕ

T
α

)
(19)

with G′ = F . Replacing this last equation in the flow
equation for V , we obtain:

dV M

d`
= (2− g)V M +

δT

2
logT . (20)

4.2 g tends towards 2 for small T

Suppose that equations (16) have a fixed point as T goes
to zero, and that close to the fixed point all the terms
have the same order of magnitude. This leads to the re-
lation κ ∝ 1/`. Supposing moreover that the parabolic
solution extends almost over a whole period and that the
correction brought about by the rounding off of the sin-
gularity around the maxima of the potential is small, we
also have

(V M − V m) ∝ κ

2
· (21)

Now, subtracting equation (20) from equation (16), we
find in the limit T → 0:

d
d`

(V M − V m) = (2− g)(V M − V m) +
δ

2
T logT (22)

which is consistent with (V M − V m) and

(2− g) ' 1
`
' 1

logT
· (23)

The result that g → 2 is independent of the way we calcu-
late g, the correction to the surface tension, and compat-
ible with our numerical integration of the flow equations.
In particular, it shows that at zero temperature, the renor-
malized potential diverges as (L/a)2, where L is the size
of the system.
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4.3 Shape of the matching region

We can deduce an equation satisfied by F ′, by using the
above ansatz in the following flow equation for V

′
:

dV
′

d`
= (2− g − 2π)V

′
+ 2π

V
′

1 + V
′

+ πV
′2 V

′′′

(1 + V
′′
)2

+
T

2
V
′′′

1 + V
′′ · (24)

Close to the fixed point, we again suppose that to leading
order in T , dV

′

d` = 0 in the above equation. Plugging in the
ansatz for V

′
and V

′′
, and considering the leading term in

T , we get to lowest order in T :

− 2πu
F ′(u)

T
α−δ

+
πu2F ′′(u)
F ′2(u)

T
α−δ

+
F ′′(u)
2F ′(u)

T
1−α

= 0.

(25)

We can show that necessarily α − δ = 1 − α. Indeed, if
1−α < α− δ, F ′′ would be equal to zero while if 1−α >
α−δ, F ′(0) would be equal to zero, both alternatives being
thus impossible. Hence, equation (25) can be rewritten as

1
2

d
du

logF ′ − π d
du

(
u2

F ′
)

= 0 (26)

which yields after integration:

F ′(u) log
(
F ′(u)
F ′(0)

)
= 2πu2. (27)

This equation fully determines the shape of the renor-
malized potential in the matching region, by integrating
twice F ′(u).
At this stage, we can note that the exponent relation

2α− δ = 1 (28)

is again independent of the scheme used to calculate of g
(see Appendix A).

In the rest of this section, we calculate the exponents
α and γ. Using the fact that g(T → 0) = 2, we also
obtain the numerical value of F ′(0). These results now
somewhat depend on the precise renormalization scheme
we use to calculate the correction g to the surface tension
(see Appendix A).

Replacing the derivatives of V by their expressions in
terms of F ′ and F ′′, in equation (5), and changing vari-
ables from ϕ to u = ϕ

T
α , we get to lowest order in T :

g(T ) ' −Tα−3δ
8π
∫ ∞

0

du u2F ′′2(u)
F ′5(u)

+ T
1−α−2δ 1

2

∫ ∞
0

du
F ′′2(u)
F ′4(u)

· (29)

From the exponent relation 2α− δ = 1 derived previously,
and the fact that g(T → 0) is finite, we have another

exponent relation α = 3δ, which turns out to be identical
to 1 − α − 2δ = 0. Therefore, both terms in g contribute
equally in the limit T → 0. From the above exponent
relations, we obtain α = 3/5 and δ = 1/5. The width
of the singular region thus decreases as T

3/5 ∝ L6/5 for
L→∞.

Defining a new variable x as

x =
eF ′(u)
F ′(0)

, (30)

we can furthermore express g(T → 0) as:

g(0) =
2
π2

(
2πe
F ′(0)

)5/2{
−
∫ ∞

e

dx
(x log(x/e))3/2

x5 log(x)

+
∫ ∞

e

dx
(x log(x/e))1/2

x4 log(x)

}
. (31)

Hence, using the fact that g(T → 0) = 2, we finally find
the constant F ′(0) ' 0.904.

5 Step energy as a function of temperature

From physical considerations we know that below the
roughening temperature, the interface grows by forming
terraces. An important quantity governing the kinetics of
growth is therefore the step energy. The width ξ of a step
and its energy per unit length βS can be obtained by com-
paring the elastic energy and the potential energy of a
profile Φ(x) which changes by one period over the length
ξ. Requiring that these two energies are of the same order
of magnitude leads to: γ/ξ2 ∼ vo where vo is the ampli-
tude of the periodic potential, or ξ ∼

√
γ/vo, and a step

energy which scales as βS ∝
√
voγ.

Since a step profile include Fourier modes such that
ξ−1 < k < |Λ|, it is natural to use in the above equations
the values of γ and vo calculated for the length L = ae` =
ξ. Since ξ(L) ∼ L/

√
vo(L), one sees that this corresponds

to stopping the renormalization procedure when vo(L) ∼
1, and not when vo(L) ∼ T , as assumed in [1].

We have integrated numerically the RG flow, starting
from γ = 1 and from harmonic potentials of various am-
plitudes vo � 1, and stopping for an arbitrary value v,
chosen here to be vc = 0.41. The resulting step energy
as a function of temperature is plotted in Figure 1. For
T close to TR, one finds that ξ diverges as e1/

√
TR−T , as

it should since our RG flow essentially boils down to the
standard one, up to a numerical prefactor [1]. For small
temperatures, however, we find that βS tends to a finite
value with a linear slope in temperature. This slope is seen
to decrease as the initial amplitude of the potential vo in-
creases. For vo = 0.01, βS decreases by ∼ 30% when T
increases from 0 to 0.25 TR. This decrease falls to ∼ 10%

1 Other values of vc would not change the qualitative fea-
tures reported below, provided vc is not too large.
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Fig. 1. βS/
√
vo as a function of the rescaled temperature for

three different values of the bare periodic potential vo, with
γo = 1.

for vo = 0.1. Again, the above results are only weakly af-
fected by the renormalisation scheme chosen for the sur-
face tension. This comes from the fact that for vo � 1, g
remains quite small until the last steps of the renormali-
sation procedure.

Experiments on 4He, on the other hand, have es-
tablished that the step energy does only depend very
weakly on temperature at small temperature, by not more
than 5% when the temperatures varies from 0.05 TR to
0.25 TR [2]. This suggests that the initial amplitude of the
potential is of the same order as γo: in this case, the width
of the step is of order a, and the bare parameters are not
renormalized except possibly very close to TR. The con-
clusion that experiments must be in the regime vo ∼ 1
is somewhat in contradiction with the estimate vo ∼ 0.05
obtained in [2], although the difference might be due to
rather large numerical factors. Another possibility is that
the low temperature measurements of the step energy are
affected by residual impurities [16].

6 Case of the contact line

In this section, we repeat the previous analysis for the
case of a contact line on a periodic substrate [17,18]. The
roughness of a contact line on a disordered substrate,
at zero temperature, has been studied analytically and

compared with the experimental predictions for the case
of super-fluid helium on a disordered cesium substrate,
where the disorder arises from randomly distributed wet-
table heterogeneities which are oxidized areas of the
substrate [19,20]. A physical realization of the theoretical
situation we consider here could be achieved by prepar-
ing a substrate with equally spaced oxidized lines which
would act as periodic pinning grooves. In this case the
critical dimension is d = 1. We denote by Φ the position
of the line with respect to a mean position. The energy of
the system is the sum of an elastic term and a potential
term given by:

H[Φ] =
γ

2

∫
dk
2π
|k||Φ(k)|2 +

∫ L

0

dx V (Φ(x)) (32)

where L is the length of the substrate and γ the stiffness.
The renormalization procedure is carried as before ex-

cept that the propagator is now given by G(k) = 1
βγ|k| .

Moreover the renormalization of the stiffness now only
comes from the scale change leading to the much simpler
flow equation for γ:

dγ
d`

= γ. (33)

Defining as before the rescaled parameters V and T with
V = V

γλ2|Λ| and T = 2T
γλ2 , the flow equations for V and T

read:

dV
d`

= V − V
′2

1 + V
′′ +

T

2
log(1 + V

′′
) (34)

and

dT
d`

= −T . (35)

During the flow, T flows to zero and the renormalized
rescaled potential V develops shocks between which it has
a parabolic shape. We characterize the singularities that
develop around the maxima of V by the following scaling
ansatz:

1 + V
′′
(ϕ) = T δe−

A
T F ′

(
ϕ

Tαe−
B
T

)
(36)

where F ′(0) > 0 and F(0) = 0. Putting u = ϕ

T
α

e
−B
T

, this

implies that for u ∼ 1,

V
′
(u) = −Tαe−

B
T u+ T

δ+α
e−

A+B
T F(u) (37)

and

V (u) = V M − T
2α

e−
2B
T
u2

2
+ T

δ+2α
e−

A+2B
T G(u) (38)

with G′ = F . Inserting the previous expressions into the
flow equation V

′
:

dV
′

d`
= −V ′ + 2V

′ V
′′

1 + V
′ + V

′2 V
′′′

(1 + V
′′
)2

+
T

2
V
′′′

1 + V
′′

(39)
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and supposing that dV
′

d` = 0, to leading order as T goes to
zero, we have to leading order in T :

− 2u
F ′(u)

T
α−δ

e
A−B
T +

u2F ′′(u)
F ′2(u)

T
α−δ

e
A−B
T

+
F ′′(u)
2F ′(u)

T
1−α

e
B
T = 0. (40)

Since F ′(0) > 0, we obtain a non trivial solution only if

2α− δ = 1 and A−B = B (41)

and F ′ is again solution of equation (27). We can ob-
tain the values of the parameters A and B by considering
separately the singular part and the regular part of the
renormalized rescaled potential V close to the fixed point.
We expand V around one of its minima ϕ∗ as:

V (ϕ) = V m +
κ

2
(ϕ− ϕ∗)2 (42)

and plug the resulting expression in the flow equation for
V . This yields:

dVm

d`
= Vm +

T

2
log(1 + κ)

dκ
d`

= κ− 2κ2

1 + κ
· (43)

We note that the fixed point value for κ is now finite as
T goes to zero and is given by κ∗ = 1. Similarly the flow
equation for V (0) = V M is:

dV M

d`
= V M +

T

2
log
(
T δ e−

A
T F ′(0)

)
. (44)

Combining equations (43) and (44), the flow equation for
the amplitude of V is given to leading order as T → 0 by:

d
d`

(V M − V m) = (V M − V m)− A

2
· (45)

Now, we expect that the singularity brings but a small
correction to the parabolic part of the rescaled potential
V , so that at the fixed point the amplitude of V is given
by κ∗

2 , leading to A = 1. The value of the exponents α and
δ would require the analysis of sub dominant terms. The
conclusion of this section is that in the case of the contact
line, the width of the singular region of the renormalized
potential decreases exponentially with length scale: the
potential quickly becomes a succession of matched parabo-
las.

7 Conclusion

In this paper, we studied the problem of the thermal
roughening transition using a FRG formalism. We have
shown that below the roughening temperature, the peri-
odic potential on large length scales cannot be described

by its lowest harmonic, but rather evolves towards a
“scalloped” shape with singularities (shocks) generated by
the non-linear renormalization flow. We expect that this
result is more generally valid, and also holds in the case
of a disordered pinning potential [13,14]. By performing
a resummation of our perturbation expansion, our results
are in principle valid in the strong coupling regime, where
the coupling constant is proportional to V/γ (rather than
V/T ). Correspondingly, when calculating physical quanti-
ties, we claim that the renormalization procedure should
be interrupted not when V (L) ∼ T (as advocated in NG),
but rather when L reaches the size of the objects under
investigation (for example the width of the steps). By com-
paring the numerical integration of the frg flow with the
experimental determination of the low-temperature step
energy of liquid 4He, and in particular its temperature
dependence, we have concluded that the surface of 4He
crystals are such that the bare coupling to the lattice is of
the same order of magnitude as the bare surface tension.

We wish to thank S. Balibar, T. Emig and M. Mézard for very
interesting discussions. We also thank the referees for various
clarifying remarks.

Appendix A: Derivation of the flow equations

In this Appendix, we sketch the procedure to obtain the
flow equations (4). We consider the partition function

Z =
∫

d[Φ] e−βH(Φ(x)) (46)

where H is the Hamiltonian given by (1). We split the
field Φ into a fast moving and a slow moving component
and average over the fast moving part. We can rewrite the
partition function, up to a multiplicative constant, as:

Z =
∫

d[Φ<] e
−β

R
<

ddk
(2π)d

|k|2|Φ<(k)|2

×
〈

e−β
R

ddx V (Φ(x)
λ )

〉
o

(47)

where 〈...〉o represents the thermal average with respect
to the Gaussian weight:

e−β
R
>

ddk
(2π)d

|k|2|Φ>(k)|2
. (48)

In the rest of this section we denote ddk
(2π)d by d̃k.

Renormalization of the periodic potential V

We look for contributions to the potential V resulting
from the above averaging, which are of the same form
as the terms present in the Hamiltonian before starting
the renormalization procedure and which are of order d`.
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These terms are represented by connected graphs and are
all obtained by expanding the potential term with respect
to Φ> up to second order. There are only two ways of
obtaining such graphs of order d`:

• By contracting p two-legged terms
−β2

∫
ddx

(Φ>(x)
λ

)2
V ′′
(Φ<(x)

λ

)
with 1 ≤ p ≤ ∞.

We must calculate:

1
p!

(
− β

2λ2

)p ∫ p∏
j=1

ddxj V ′′
(
Φ<(xj)
λ

)

×
∫ p∏

j=1

d̃kj d̃k′je
i(k1+k′1)x1...i(kp+k′p)xp

×
〈
Φ>(k1)...Φ>(k′p)

〉
o

(49)

which gives after averaging over the fast modes:

(−1)p

2p

(
1
γλ2

)p ∫ p∏
j=1

ddxjV ′′
(
Φ<(xj)
λ

)

×
∫ p∏

j=1

d̃kj
eik1(x1−x2)+...ikp(xp−x1)

|k1|2...|kp|2
· (50)

In the above expression, the space dependence of V ′′
is slowly varying, and since the integral is dominated
by the region where the xj ’s are close to one another,
we can with little error, treat these terms as approx-
imately equal to V ′′

(
Φ<(x1)
λ

)
. After integrating over

the rest of the xj ’s and summing up over p, we are left
with:

−βd`
Kd|Λ|dT

2

∫
ddx log

(
1 +

V ′′

γλ2|Λ|2
)
. (51)

• By contracting 2 one-legged terms
−β
∫

ddx
(Φ>(x)

λ

)
V ′
(Φ<(x)

λ

)
with p two-legged terms

−β2
∫

ddx
(
Φ>(x)
λ

)2

V ′′
(
Φ<(x)
λ

)
with 0 ≤ p ≤ ∞. To

illustrate our method, we begin with p = 0. Expressing
the fast modes in Fourier space, we have in discrete
space:

1
2!
β2

(
1
λ2

)(
a

L

)2d∑
x

∑
y

V ′
(
Φ<(x)
λ

)
V ′
(
Φ<(y)
λ

)∑
k

∑
k′

eikx+ik′y

〈
Φ>(k)Φ>(k′)

〉
o

(52)

which gives after averaging over the fast modes:

β

2

(
1
γλ2

)
a2d
∑
x

∑
y

V ′
(
Φ<(x)
λ

)

× V ′
(
Φ<(y)
λ

)
1
L

∑
k

eik(x−y)

|k|2 · (53)

In the above expression, the main contribution comes
from the part x = y, while the part with x 6= y averages
to zero for slowly varying Φ<. Using the fact that |Λ| =
2π
a , the result is:

βd`
Kd(2π)d

2

∫
ddx

V
′2

(Φ<(x)/λ)
γλ2|Λ|2 · (54)

Proceeding in a similar way for 1 ≤ p ≤ ∞, we have

β2

(
−β
2

)p 1
(p+2)!

(p+1)(p+2)
2

(
1
λ2

)p+1(
a

L

)(p+2)d

×
∑

x,y,x1...xp

V ′
(
Φ<(x)
λ

)
V ′
(
Φ<(y)
λ

)

× V ′′
(
Φ<(x1)
λ

)
...V ′′

(
Φ<(xp)
λ

)
×

∑
k,k′,k1...k′p

eikx+ik′y+i(k1+k′1)x1+...+i(kp+k′p)xp

×
〈
Φ>(k)Φ>(k′)Φ>(k1)...Φ>(k′p)

〉
o

(55)

which yields after retaining the x = y part and aver-
aging over the fast modes:

β

2
(−1)pad

(
1
λ2

)p+1 ∫ p∏
j=1

ddxjddxV ′2(Φ<(x))

×
p∏
j=1

V ′′(Φ<(xj))
∫ p∏

j=1

d̃kj d̃k

× eik(x−x1)+ik1(x1−x2)...+ikp(xp−x)

|k|2|k1|2...|kp|2
· (56)

Treating the above expression as equation (50) we are
left with:

βd` (−1)p
Kd(2π)d

2

∫
ddx

(
V ′′(Φ<(x)/λ)
γλ2|Λ|2

)p
. (57)

Summing up over p, we finally obtain:

βd`
Kd(2π)d

2

∫
ddx

V ′2(Φ<(x)/λ)
γλ2|Λ|2

×
(

1 +
V ′′(Φ<(x)/λ)
γλ2|Λ|2

)
. (58)

Taking into account the rescaling of the potential term,
and supposing we are in the flat phase so that Φ and
λ are not rescaled, we obtain for d = 2:

dV
d`

= 2V − π

(
V ′2

γλ2|Λ|2

)
1 +

(
V ′′

γλ2|Λ|2

)
+

T

4πγ
log
(

1 +
V ′′

γλ2|Λ|2
)
. (59)
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This flow equation can be rewritten in terms of the
rescaled parameters V = V

γλ2|Λ|2 and T = T
2πγλ2 .

Putting g = 1
γ

dγ
d` , we have:

dV
d`

= (2− g)V − π V
′2

(1 + V
′′
)

+
T

2
log(1 + V

′′
). (60)

This result is nothing but a projection onto a purely
local potential of the general renormalisation flow of
Wegner and Houghton [11].

Renormalization of the surface tension γ

We establish in this section a particular renormalisation
scheme for the elastic constant γ, valid in the limit when
T → 0. The contributions to the gradient term are ob-
tained from equations (50) and (56).

• Consider first the contribution due to equation (56).
Here, x = y plays a special role. It is thus natural to
expand V ′′ around this particular point as:

V ′′
(
Φ>(xj)
λ

)
= V ′′

(
Φ>(x)
λ

)
+

1
λ

(xj − x)∇Φ>(x)V ′′′
(
Φ>(x)
λ

)
·

(61)

The contribution of equation (56) to the gradient term
is given by:

βγ

2
ad(−1)p

(
1
γλ2

)p+2 ∑
n<m

∫ p∏
j=1

ddx̃jddx

× (x̃n∇Φ(x))(x̃m∇Φ(x))V ′2
(
Φ<(x)
λ

)
× V ′′p−2

(
Φ<(x)
λ

)
V ′′′2

(
Φ<(x)
λ

)
×
∫ p∏

j=1

d̃kj d̃k
eikx̃1+ik1(x̃1−x̃2)...+ikpx̃p

|k|2|k1|2...|kp|2
· (62)

After integrating over x̃i for i 6= m,n, we are left with:

βγ

2
ad(−1)p

1
γp+2

∑
n<m

∫
ddxddx̃mddx̃n

N∑
ν=1

x̃νmx̃
ν
n(∇Φ(x))2

ν

× V ′2
(
Φ<(x)
λ

)
V ′′p−2

(
Φ<(x)
λ

)
V ′′′2

(
Φ<(x)
λ

)
×
∫

d̃kdk̃′d̃k′′
e−ikx̃n+ik′′x̃m+ik′(x̃n−x̃m)

(|k|2)n(|k′|2)m−n(|k′′|2)p+1−m ·

(63)

Using the fact that ixνeikx = ∂
∂kν eikx, and an integra-

tion by parts, the above expression reads :

βγ

2
ad

(−1)p

γp+2

∑
n<m

∫
ddx(∇Φ<(x))2

νV
′2

×
(
Φ<(x)
λ

)
V ′′′2

(
Φ<(x)
λ

)
V ′′p−2

(
Φ<(x)
λ

)
×
∫

ddx̃nddx̃m
∫

dk̃′
eik′(x̃n−x̃m)

(|k′|2)m−n

×
[∫

Bν

1
(|k|2)n

e−ikx̃n + 2n
∫

dk̃
kν

(|k|2)n+1
e−ikx̃n

]
×
[∫

Bν

1
(|k|2)p+1−m e−ik′′x̃m + 2(p+ 1−m)

×
∫

dk̃′′
kν

(|k′′|2)p+2−m e−ik′′x̃m

]
. (64)

The integral
∫
Bν

involves an integral over the boundary
of kν with the constraint that the vector k is in the
shell, and the usual “volume” integration over the kµ’s
for µ 6= ν. In order to complete the calculation, we
have to evaluate the three different terms which come
from the expansion of the terms within brackets.
The contribution from the product of the two volume
terms gives in terms of the rescaled variables, after
integrating over x̃n and x̃m and summing up over p:

βγ

2
4Kd(2π)d

d
d`

(−1)p

γp+2

∫
(∇Φ<(x))2

ν

×
V
′2 (Φ<(x)

λ

)
V
′′′2 (Φ<(x)

λ

)
(

1 + V
′′ (Φ<(x)

λ

))5 · (65)

Since we are looking for the contribution to the gradi-
ent term, only the projection of the periodic function
V
′2
V
′′′2

(1+V
′′

)5 on the zeroth harmonic counts. The contribu-
tion to the elastic constant, for d = 2 is thus:

−γd`
4
d
Kd(2π)d

∫ 1

0

dϕ
V
′2

(ϕ)V
′′′2

(ϕ)(
1 + V

′′
(ϕ)
)5 · (66)

The next term that one should consider is the prod-
uct of a boundary term and a volume term. This term
however does not contribute for symmetry reasons. Fi-
nally the last contribution is, after having integrated
over x̃n and x̃m:

(−1)p
βγ

2

∫
dx

V ′2V ′′′2V ′′p−2

γp+2

×
∫
Bν(k)

1
(|k|2)p+1

∫
Bν(k′′)

δd(k − k′′). (67)

This last integral is in principle divergent, since it is
proportional to δ(0). However, this infrared divergence
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is removed if the points xi’s are constrained to lie in a
region a size ξ, where ξ is the correlation length. This
is, in essence, the regularisation proposed by NG – see
below. Up to a numerical factor, this amounts to re-
placing δ(0) by ξ/a. One can then easily convince one-
self that the integral term is proportional to 1

(|Λ|2)p+2

multiplied by a constant linear in p. After summing
over p, we thus have an overall contribution to γ due
to this boundary term which has the same structure
as before, but with a smaller power for the (1 + V

′′
)

term in the denominator. Using the low temperature
scaling of the singularity presented in Section 4, we
can see that the boundary contribution is subleading
when T goes to zero, where ξ/a remains finite. This
term however becomes important for T → TR, and a
more careful analysis would be needed in this region.
• Consider now equation (50). In order to obtain a term

of the form (∇Φ>(x))2, we have to expand two V ′′

terms. We proceed as follows: if we choose to expand
V ′′(Φ<(xn)/λ) and V ′′(Φ<(xm)/λ) with m < n, we
perform the expansion with respect to (xm + xn)/2.
The V ′′ terms thus give:

− 1
4

((
xn − xm

λ

)
∇Φ<

(
xn + xm

2

))2

× V ′′′2
(
Φ

(
xn + xm

2λ

))
V ′′p−2

(
Φ

(
xn + xm

2λ

))
.

(68)

Integrating over xj for j 6= m,n, we get:

− βγ

2
(−1)p

p

T

γ

(
1
γλ2

)p
×
∑
m<n

∫
ddxmddxn

(
∇Φ<

(
xn + xm

2

))2

ν

× V ′′′2
(
Φ

(
xn + xm

2

))
V ′′p−2

(
Φ

(
xn + xm

2

))
×
∫

d̃kd̃k′ (xm − xn)2
ν

ei(k−k′)(xm−xn)

(|k|2)p−n+m(|k′|2)n−m
·

(69)

Writing (xm−xn)2
νei(k−k′)(xm−xn) = ∂

∂kν
∂
∂k′ν

ei(k−k′)(xm−xn),
and performing the rest of the calculation as described
above, we find that the main contribution to the elastic
term in terms of the rescaled parameters V and T , in
the limit T → 0, is given by

γd`
T

2d

∫ 1

0

dϕ
V
′′′2

(ϕ)(
1 + V

′′
(ϕ)
)4 (70)

finally leading, for d = 2, to the renormalization of γ
given in the main text. As above, the boundary term
gives rise to sub-leading corrections in the low temper-
ature limit. Note that if we had chosen another expan-
sion scheme to obtain the contribution to the gradi-
ent term, for instance if we had expanded the terms

with respect to the centre of mass of x1, x2, ..., xp, we
would have obtained a somewhat different expression
for g. This would only affect the precise value of the
exponents α and δ obtained in the text, but not the
qualitative features of the solution.

The NG scheme

Before ending this section, we briefly discuss the
Nozières and Gallet’s approach and show how it differs
from ours. Following NG, we can express the Hamilto-
nian formally as:

H(Φ, δΦ) =
γ

2

∫
d2k

(2π)2

|k|2
f(k/|Λ|)

×
[
|Φ(k)|2(1− Ψ(k)) + |δΦ(k)|2Ψ(k)

]
+
∫

d2x V

(
2π
λ

(
Φ(x) + δΦ(x)

))
(71)

where Φ and δΦ are independent statistical variables
verifying 〈Φ2

k〉 = T
γ|k|2 (1 − Ψ)f and 〈δΦ2

k〉 = T
γ|k|2Ψf ,

and f the form factor, which depends on the cut-off
procedure. Since V is periodic, it can be expressed in
terms of its Fourier series, V (u) = v

∑∞
n=1 an cosnu.

To lowest order in perturbation expansion, one has
to calculate the 2nd cumulant, which is nothing but
the connected part of 1

2 〈V 2〉. Using a Taylor expan-
sion of the cosine, and the fact that the correla-
tor 〈δΦ(x)δΦ(y)〉 = T

2πγ δg(x − y), where δg(u) =
T
γ

∫
d2k

(2π)d
1
|k|2Ψ(k)f(k) eik(x−y), the second cumulant

reads:

β2v2

∫
d2xd2y

∞∑
n,m=1

anam exp
(
− πT
γλ2

δg(0)
)

×
{

cos
2π
λ

(nΦx−mΦy)
[
exp
(
−πT
γλ2

2mn δg(x−y)
)
−1
]

+cos
2π
λ

(nΦx+mΦy)
[
exp
(
−πT
γλ2

2mn δg(x−y)
)

+1
]}
.

(72)

At this stage, if we consider only the lowest harmonics,
we should discard the term cos 2π

λ (nΦx + mΦy) and
retain only the terms n = m in the rest. This is the
procedure followed by ng. They then average over the
Φ terms so that the final result is:

β2v2

∫
d2xd2y

∞∑
n=1

a2
ne−

πT
γλ2 δg(0)

×
(

e
πT
γλ2 2n2δg(x−y) − 1

)〈
cos

2πn
λ

(Φ(x)− Φ(y))
〉
.

(73)

Still following NG, we should consider Φ as the sum
of an equilibrium part Φeq and an imposed perturba-
tion ζ. Within this scheme, the average in the previous
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expression is:〈
cos

2πn
λ

(Φ(x)−Φ(y))
〉

eq

[
1− 2π2n2

λ2
(ζ(x)−ζ(y))2

]
.

(74)

The extra factor coming from the average over Φeq ba-
sically acts as a cut-off for distances x−y greater than
the correlation length ξ, and leads to a finite renormal-
isation of γ.
Now, another way of preceding is to keep all terms in
expression (72), and expand the exponential in δg. To
fix ideas, to first order in δg, the contribution coming
from the terms within curly brackets is:

−2mn
πT

γλ2
δg(x− y)2 sinnΦx sinmΦy. (75)

The overall contribution due to this term is noth-
ing but

(∫
ddxV ′

)2, which appears in Wegner and
Houghton’s paper [11]. Within the projection scheme
used in the present paper, this term therefore con-
tributes to the renormalisation of the potential term,
but not of the surface tension.

Appendix B: The strong coupling limit:
A variational calculation

A very simple Gaussian variational calculation of the
roughening transition has been proposed by Saito [12],
(see also [5]). Here, we show that this method suggests
that the roughening transition becomes first order in the
strong coupling limit, where the perturbative FRG breaks
down.

The variational Hamiltonian is taken to be:

Ho =
1
2

∫
d2s d2s′ (Φ(s) − Φo)g−1(s− s′)(Φ(s′)− Φo)

(76)

from which one can compute a variational free energy,
which reads:

Fvar

L2
=− 1

2β

∫
d2k

(2π)2
ln
(

2πg(k)
βa4

)
+

γ

2β

∫
d2k

(2π)2
|k|2g(k)+v cos(2πΦo/λ) e−2π2G/λ2

.

(77)

Here, G is defined as:

G =
〈
Φ2(x)

〉
o

=
1
β

∫
d2k

(2π)2
g̃(k). (78)

The optimal set of parameters Φo and g(k) are determined
from: ∂Fvar/∂g(k) = 0 and ∂Fvar/∂Φo = 0. The second
equation leads to sin(2πΦo/λ) = 0; we choose Φo such that

the free-energy is minimum, that is, for example Φo = λ/2.
From the second equation one finds:

g̃(k) =
1

γ|k|2 + v
(

2π
λ

)2 exp(−2π2G/λ2)
· (79)

The width of the interface G then satisfies the following
self-consistent equation:

2π2G

λ2
= T ln

(
v + exp(2π2G/λ2)

v +
(
a
L

)2 exp(2π2G/λ2)

)
(80)

where v = v
γ

(
a
λ

)2 and T = πT
2γλ2 . This equation has dif-

ferent types of solutions, depending on the fact that G
remains finite or diverges in the limit L→∞.

• G diverges with L

If G diverges when L → ∞, then necessarily v �
(a/L)2 exp(2π2G/λ2). In this case, one then finds
G = (T/2πγ) ln(L/a). Since (a/L)2 exp(2π2G/λ2) =
(L/a)2(T−1), the starting hypothesis is only consistent in
the high temperature phase T > 1. Hence, for T < 1, i.e.
for T less than the roughening transition TR = 2γλ2/π,
the width of the interface G is finite (flat phase). The
variational method thus leads to the exact perturbative
transition temperature.

• G is finite

When G is finite, the equation (80) can be written, in the
large L limit, in terms of Q = exp(2π2G/λ2):

lnQ = T ln
(

1 +
Q

v

)
. (81)

For T < 1, there always exists a solution for Q greater
than 1, and therefore a finiteG. For T = 1, a finite solution
for G only exists if v > 1. In the case T > 1, one can notice
that a solution to equation (81) corresponds to a zero of
the function:

f(Q) = lnQ− T ln
(

1 +
Q

v

)
. (82)

This function is concave and has a maximum at Q∗ =
v/(T − 1). For v < T − 1, there is therefore no solution.
On the contrary, for v > T − 1, f has two zeroes Q∗1
and Q∗2 such that 1 < Q∗1 < Q∗ < Q∗2. The true so-
lution is the one which minimizes the free-energy. After
a little algebra, one finds that for T > 1, G is infinite
when v < vc(T ) and finite as soon as v ≥ vc(T ), where
vc(T ) = expT lnT − (T − 1) ln(T − 1). The transition is
therefore first order. Conversely, for fixed v > 1 the transi-
tion temperature depends continuously on v and is greater
than TR, where as for v > 1, the transition always occurs
at TR and is second order. Note that v = 1 is precisely the
point where perturbation theory breaks down, because of
a short wavelength instability.
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